Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 1436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297115

RESUMO

Pathogenic microorganisms confront several proteolytic events in the molecular interplay with their host, highlighting that proteolysis and its regulation play an important role during infection. Microbial inhibitors, along with their target endogenous/exogenous enzymes, may directly affect the host's defense mechanisms and promote infection. Omp19 is a Brucella spp. conserved lipoprotein anchored by the lipid portion in the Brucella outer membrane. Previous work demonstrated that purified unlipidated Omp19 (U-Omp19) has protease inhibitor activity against gastrointestinal and lysosomal proteases. In this work, we found that a Brucella omp19 deletion mutant is highly attenuated in mice when infecting by the oral route. This attenuation can be explained by bacterial increased susceptibility to host proteases met by the bacteria during establishment of infection. Omp19 deletion mutant has a cell division defect when exposed to pancreatic proteases that is linked to cell-cycle arrest in G1-phase, Omp25 degradation on the cell envelope and CtrA accumulation. Moreover, Omp19 deletion mutant is more susceptible to killing by macrophage derived microsomes than wt strain. Preincubation with gastrointestinal proteases led to an increased susceptibility of Omp19 deletion mutant to macrophage intracellular killing. Thus, in this work, we describe for the first time a physiological function of B. abortus Omp19. This activity enables Brucella to better thrive in the harsh gastrointestinal tract, where protection from proteolytic degradation can be a matter of life or death, and afterwards invade the host and bypass intracellular proteases to establish the chronic infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Evasão da Resposta Imune , Lipoproteínas/imunologia , Inibidores de Proteases/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Brucella abortus/genética , Brucelose/genética , Brucelose/patologia , Feminino , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/imunologia
2.
Front Immunol ; 8: 171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261222

RESUMO

Most pathogens infect through mucosal surfaces, and parenteral immunization typically fails to induce effective immune responses at these sites. Development of oral-administered vaccines capable of inducing mucosal as well as systemic immunity while bypassing the issues of antigen degradation and immune tolerance could be crucial for the control of enteropathogens. This study demonstrates that U-Omp19, a bacterial protease inhibitor with immunostimulatory features, coadministered with Salmonella antigens by the oral route, enhances mucosal and systemic immune responses in mice. U-Omp19 was able to increase antigen-specific production of IFN-γ and IL-17 and mucosal (IgA) antibody response. Finally, oral vaccination with U-Omp19 plus Salmonella antigens conferred protection against virulent challenge with Salmonella Typhimurium, with a significant reduction in bacterial loads. These findings prove the efficacy of this novel adjuvant in the Salmonella infection model and support the potential of U-Omp19 as a suitable adjuvant in oral vaccine formulations against mucosal pathogens requiring T helper (Th)1-Th17 protective immune responses.

3.
J Immunol ; 196(10): 4014-29, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084100

RESUMO

In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/fisiologia , Vacinas Anticâncer/imunologia , Catepsinas/metabolismo , Células Dendríticas/imunologia , Imunoterapia/métodos , Lipoproteínas/metabolismo , Lisossomos/metabolismo , Melanoma/terapia , Animais , Antígenos de Neoplasias/imunologia , Apresentação Cruzada , Feminino , Ativação Linfocitária , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...